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Abstract. We present a theoretical description for the effective linear and nonlinear optical properties of
compositionally graded films consisting of nonlinear metal particles and linear dielectric particles. The
volume fraction of metal particles varies along the direction perpendicular to the film. To account for the
composition gradient, we resort to effective medium approximation to investigate the equivalent (local)
dielectric constant and third-order nonlinear susceptibility. As a result, the effective second-rank dielectric
constant tensor and fourth-rank nonlinear optical susceptibility tensor are directly determined by regarding
the graded film as a multilayer one. We predict that for a power-law composition gradient p(z) = zm, the
increase of m leads to large enhancement of the optical nonlinearity and hence the figure of merit in the high-
frequency region. On the other hand, for a given total volume fraction, we find that the optical nonlinearity
enhancement for the composition gradient case is larger than the one in non-graded case. Moreover, we can
choose different graded profile to realize the appreciable optical nonlinearity enhancement. Therefore, the
compositionally graded film can be served as a suitable candidate material for obtaining the large optical
nonlinearity and optimal figure of merit.

PACS. 42.65.-k Nonlinear optics – 42.79.Ry Gradient-index (GRIN) devices – 72.20.Ht High-field and
nonlinear effects – 77.84.Lf Composite materials

1 Introduction

There are practical needs for nonlinear optical composite
materials that possess large nonlinear susceptibility cou-
pled with a fast response time [1–4]. For instance, this
kind of materials may be useful for the design of nonlinear
optical devices, like ultrafast optical switches, and so on.
By taking into account the local-field effect and the per-
colation effect, large optical nonlinearity has been found
in multi-layer structures [5], in uniaxial anisotropic com-
posites [6], and in metal/dielectric composites with shape
distribution [7].

Recently, graded materials have attracted much inter-
est in various engineering applications [8] due to their
different physical properties from the homogeneous ones.
In nature, there exist many graded materials, such as
biological cells [9] and liquid crystal droplets [10]. To
investigate the effective nonlinear optical properties of
graded composites in which nonlinear spherical inclu-
sions are randomly embedded in a host medium, we pro-
posed a nonlinear differential effective dipole approxima-
tion (NDEDA) [11]. We showed an excellent agreement
between the NDEDA and the first-principles ap-
proach [11]. To one’s interest, the dielectric gradation in
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the nonlinear metal particles is found to be helpful to en-
hance both the optical nonlinear susceptibility and the
figure of merit. Later, the idea was generalized to the di-
electric graded films [12]. To the best of our knowledge,
in above works, the gradation mainly results from the ra-
dial inhomogeneity of the local physical parameters such
as the dielectric constant (or the electric conductivity).

On the other hand, spatially graded composites (SGC)
are a new generation of engineered materials in which
the geometric parameters such as the composition or mi-
crostructure morphology (rather than the local physical
parameter) are gradually varied in one or more dimen-
sions [13,14]. In contrast to traditional composite mate-
rials and graded composites with radial inhomogeneity,
SGC possess many novel features, and hence have many
realistic applications as electronic devices, optical films,
and thermal barrier coatings. For example, metal-ceramic
SGC are super-heat-resistant materials for aerospace ap-
plications. Generally, in SGC, the composition gradient
is introduced to provide the mechanical coupling between
the components. However, it will influence the effective
properties of the SGC. In this connection, the effective
thermal conductivity of the composite film with composi-
tion gradient has been investigated in references [15,16].
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In this paper, we would like to study the effective linear
and nonlinear optical properties of spatially graded metal-
dielectric films. For such SGC, the volume fraction of the
metal particles is assumed to vary along the direction per-
pendicular to the film. Thus, our present study are valid
for all possible values of volume fractions of the metal par-
ticles. Moreover, the graded film possesses anisotropic lin-
ear and nonlinear optical properties, rather than isotropic
physical properties in reference [7]. We will show that the
presence of composition gradient plays a crucial role in
enhancing the third-order nonlinear susceptibility as well
as the figure of merit.

The paper is organized as follows. In Section 2, we
present our theoretical development. In Section 3, numer-
ical results are shown for the linear absorption and the
optical nonlinearity enhancement, as well as the figure of
merit, for various composition gradients. This paper ends
with a discussion and conclusion in Section 4.

2 Theoretical development

Let us consider metallic/dielectric functionally graded film
with width L along z-axis (see Fig. 1). In each z-slice, there
are two components: one is the nonlinear metal with lin-
ear dielectric constant ε1(ω) and the third-order nonlin-
ear susceptibility χ1(ω); the other is the linear dielectrics
with dielectric constant ε2. We assume the volume frac-
tion of the nonlinear metal component to be p(z) at the
position z, which varies only in the z direction. Such a
property is typical for a FGC. Moreover, we take the two
faces of the film to lie at z = 0 and z = L.

To investigate the effective linear and nonlinear op-
tical responses of the graded film, we must first obtain
the equivalent (local) linear dielectric constant ε̄(z, ω)
and nonlinear optical susceptibility χ̄(z, ω) for the z-slice,
which are a function of the volume fraction at z. For the
equivalent linear dielectric constant ε̄(z, ω), we resort to
three-dimensional effective medium approximation, which
receives the form [17]

p(z)
ε1(ω) − ε̄(z, ω)
ε1(ω) + 2ε̄(z, ω)

+ [1 − p(z)]
ε2 − ε̄(z, ω)
ε2 + 2ε̄(z, ω)

= 0. (1)

Equation (1) is applicable when two components percolate
together over a composition range.

Consequently, we adopt the mean-field approximation
to obtain the equivalent third-order nonlinear optical sus-
ceptibility χ̄(z, ω) [18,19],

χ̄(z, ω) =
χ1

p(z)

∫ 1

0

(
s(z, ω)

s(z, ω)− x

)2

× m(x)dx ·
∫ 1

0

∣∣∣∣ s(z, ω)
s(z, ω) − x

∣∣∣∣
2

m(x)dx, (2)

where s(z, ω) ≡ ε2/[ε2−ε1(z, ω)], and m(x) is the spectral
density function, which was well studied independently
by Bergman [20] and Milton [21]. For three-dimensional

Fig. 1. A composite film with composition gradient.

effective medium approximation, m(x) admits

m(x) =
3p(z) − 1

2
θ [3p(z) − 1] δ(x)

+

{
3
√

(x−x1)(x2−x)

4πx if x1 < x < x2

0 otherwise,
(3)

where θ(· · ·) is the step function and x1,2 = {1 + p(z) ∓
2
√

2p(z)[1 − p(z)]}/3.
Next, we aim at studying the effective linear dielec-

tric constant tensor
↔
εe and effective third-order nonlin-

ear susceptibility tensor
↔
χe. Once ε̄(z, ω) and χ̄(z, ω) are

known, the problem reduces to the one of multilayers [5].
For our simple geometry, the non-diagonal components
of the second-rank tensor

↔
εe are zero, while the diagonal

components are given by

1
εe
zz

=
1
L

∫ L

0

dz

ε̄(z, ω)
, (4)

if the electric field is polarized along z-axis, and

εe
xx = εe

yy =
1
L

∫ L

0

ε̄(z, ω)dz, (5)

if the electric field is polarized in the plane of the layers
(i.e., E⊥z).

In general, the components of the effective third-order
nonlinear optical susceptibility tensor

↔
χe can be defined

as follows,

χe
ijklE0,iE0,jE0,kE∗

0,l =

1
L

∫ L

0

dzχ̄ijkl(z, ω)Ei(z, ω)Ej(z, ω)Ek(z, ω)E∗
l (z, ω),

(6)

where χ̄ijkl(z, ω) is the components of the equivalent
third-order nonlinearity, while Ei(z, ω) is the local field
at position z, and has the form

Ei(z, ω) =

{
εe

zz

ε̄(z,ω)E0,z if i = z

E0,i if i = x, y,
(7)

where E0,i is the applied field amplitude along i-axis.
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Using equations (4), (5), and (6), the non-vanishing
components of the four-rank tensor

↔
χe can be written as,

χe
zzzz =

1
L

∫ L

0

dzχ̄(z, ω)
∣∣∣∣ εe

zz

ε(z, ω)

∣∣∣∣
2 (

εe
zz

ε(z, ω)

)2

,

χe
xxxx = χe

yyyy =
1
L

∫ L

0

dzχ̄(z, ω),

χe
xxzz = χzxxz = · · · =

1
3L

∫ L

0

dzχ̄(z, ω)
∣∣∣∣ εe

zz

ε(z, ω)

∣∣∣∣
2

,

χe
xzzx = χe

zxzx = · · · =
1

3L

∫ L

0

dzχ̄(z, ω)
(

εe
zz

ε(z, ω)

)2

.

(8)

In deriving equation (8), we have assumed that the local
nonlinear susceptibility at the position z is electronic in
nature, which implies that [22]

χ̄xxxx = χ̄yyyy = χ̄zzzz = χ̄(z, ω),

χ̄xyyx = χ̄xyxy = χ̄xxyy = · · ·1
3
χ̄xxxx.

3 Numerical results

In what follows, we shall do some numerical calculations
based on equations (4), (5) and (8). As a model system,
we consider spherical particles to be a Drude-like metal,
which has a linear dielectric constant of the form

ε(r, ω) = 1 − ω2
p

ω(ω + iγ)
, (9)

where γ is the relaxation rate, and ωp represents the
plasma-frequency. For numerical calculations, we make
additional assumption that the dielectric constituent has
a frequency-independent dielectric constant ε2 = (3/2)2
(static dielectric constant of water). Furthermore, to high-
light the composite effect, a frequency-independent real
value of χ1(ω) (≡ χ1) is set.

Figure 2 displays the linear optical absorption co-
efficient αzz ∼ ω/ωpIm[

√
εe
zz], optical nonlinearity en-

hancement |χe
zzzz/χ1| and figure of merit [FOMz ≡

|χe
zzzz |/(χ1αzz)] versus the normalized frequency ω/ωp for

a power-law profile in the volume fraction p(z) = zm. As
is evident from the results, there exists a broad band due
to surface plasmon resonance in the range 0 < ω < ωp for
m = 0.5. As m increases, the center for the resonant band
exhibits a blue-shift. At the same time, with increasing m,
the volume fraction of metal particles becomes small, lead-
ing to narrow bands accompanied with small magnitude
especially in the region 0 < ω < 0.8ωp. Moreover, for
small z, as p(z) = zm will be smaller than 1/3 (the perco-
lation threshold of metal component at each slice), the z
slice is not metallic. Consequently, the graded film will be
always insulating in the direction parallel to the z-axis,
manifested by the absence of a Drude peak around zero
frequency. For |χe

zzzz/χ1|, we predict large enhancement
of optical nonlinearity in the high-frequency region. To

Fig. 2. The linear optical absorption ωIm[
√

εe
zz]/ωp, optical

nonlinearity |χe
zzzz/χ1|, and FOMz versus the normalized inci-

dent angular frequency ω/ωp, for power-law composition gra-
dient p(z) = zm with various m.

one’s interest, such an enhancement becomes more promi-
nent with increasing m. We can easily understand this as
follows: with increasing m (or decreasing the volume frac-
tion), much more isolated metallic clusters appear in the
position z, which is helpful to enhance the surface plas-
mon resonance and enlarge the local field. As a result,
the effective optical nonlinearity can be largely enhanced.
The figure of merit (FOM) takes on the similar behav-
ior as |χe

zzzz |/χ1|. Interestingly, the FOM in the region
0.4ωp < ω < ωp is quite useful for practical applications
due to the fact that, in that region, the optical nonlinear-
ity is enhanced, while the optical absorption is depressed.
Therefore, the compositionally gradation is very useful to
make the FOM attractive.

Similar considerations apply to the x (or y)-
component. In Figure 3, we plot αxx ∼ ω/ωpIm[

√
εe
zz ],

|χe
zzzz/χ1|, and FOMx against ω for p(z) = zm with

various m. The optical absorption for the electric field
polarized in the plane of the layers decreases monoton-
ically with increasing ω, in contrast to the one shown
in Figure 1. In this case, the equivalent electric field is
spatially uniform, thus the effective dielectric constant
becomes simple averages of the equivalent dielectric con-
stant at z-slice. In this connection, the metallic behavior
at large z-slice will lead to the metallic behavior of the
graded film along x (or y)-axis. Therefore, a Drude peak
appears, characterized by a fast increase of linear absorp-
tion at ω ∼ 0. The behavior of the optical nonlinearity
enhancement is also quite different from the z-component
in that it is determined by the geometric average of the
equivalent nonlinear susceptibility (for the z component,
it results from not only the contribution form the equiva-
lent nonlinear susceptibility, but also the local field effect
due to the compositional gradations). The above reason
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Fig. 3. Same as Figure 1, but for the x-component.

also accounts for the larger magnitude of the effective non-
linearity for z-component than the one for x-component.
From the figure, we also note that the optical nonlinear-
ity peak located at the high-frequency region is separated
from the linear absorption one at the low-frequency one
especially for small m, resulting in the appreciable FOM
near ω ≈ ωp. Here, we would like to mention that the
separation of two peaks has been predicted for a uniaxial
anisotropic composite of metal nanocrystal in a dielectric
host [6]. In addition, we find that by the adjustment of
compositional gradation parameter m, we can obtain the
large enhancement of FOM in the high-frequency region.

We also plot the optical nonlinearity enhancement for
non-diagonal components in Figure 4. Again, large optical
nonlinearity enhancement occurs at large ω especially for
larger m.

Next, we would like to discuss the results of compo-
sitionally graded films with different profiles in the vol-
ume fraction p(z), but containing the same total vol-
ume fractions of metal particles. We show the results for
z-component in Figure 5 for two profiles p(z) = z/L and
3(z/L)1/2/4. The non-gradient profile p(z) = 1/2 is also
plotted for comparison. It is quite easy to demonstrate
that the choices really satisfy the requirements:

∫ L

0

dz
z

L
=

∫ L

0

dz
3
4

√
z

L
=

∫ L

0

dz
1
2

=
L

2
. (10)

Although the volume fraction profile p(z) = (3/4)
√

z/L
has the same amount of metal particles as in the linear
profile p(z) = z/L, the distribution of metal particles for
a
√

z profile leads to p = 3/4 at z = L, rather than p = 1
for a z profile. From Figure 5, we find that the results
for different profiles are quite different, although the to-
tal volume fractions are the same. Both effective optical
nonlinearity and FOM for linear profile are found to be
enhanced in the frequency region 0.2 < ω < 0.9ωp, in

Fig. 4. The non-diagonal components of effective optical non-
linearity tensor as a function of ω/ωp.

comparison with those for the
√

z profile. The difference
mainly results from the fact that there exists a broader
z-region for linear profile than

√
z profile, in which the

volume fraction of metal particles is small. On the other
hand, near ωp, the FOM for p(z) = (3/4)

√
z/L is one or-

der magnitude larger than the one for linear profile. Fur-
thermore, in the middle-frequency region 0.2 < ω < 0.9ωp,
both the effective optical nonlinearity and FOM for com-
position gradient are larger than those for non-gradient
case. Therefore, for a given total volume fraction, we can
choose a suitable compositional gradation profile for the
functionally graded film to realize the large enhancement
of optical nonlinearity and further FOM.

4 Discussion and conclusion

In this paper, we investigate the effective linear and non-
linear optical properties of compositionally graded film
in which the metal particles have weak nonlinearity. We
give a detail description of the nonzero components of
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Fig. 5. Same as Figure 1, but for some composition gradients
with the same total volume fractions.

the second-rank effective dielectric constant tensor and
the fourth-rank effective nonlinear susceptibility tensor.
The effect of the gradation profile on these nonzero com-
ponents is studied. We found that for the power-law pro-
file in the volume fraction p(z) = zm, with increasing m,
we can realize large optical nonlinearity enhancement and
optimal FOM in the high-frequency region when the elec-
tric field is polarized along z-axis. On the other hand, if
the electric field is polarized perpendicular z-axis, the ad-
justment of m is helpful to realize the separation of the
optical nonlinearity peak from the absorption one, result-
ing in large figure of merit. For the same volume fraction
of metal particles, we can choose different compositional
profile to achieve large optical nonlinearity and FOM.

In our work, the theory was developed based on the as-
sumption that the metallic particles are nonlinear, but the
dielectric grains are linear. Actually, the work can be easily
generalized to the case when both particles are nonlinear.
In this instance, the equivalent (local) third-order nonlin-
ear optical susceptibility χ̄(z, ω) should be written as,

χ̄(z, ω) =
χ1

p(z)

∫ 1

0

[
s(z, ω)

s(z, ω) − x

]2

m(x)dx

×
∫ 1

0

∣∣∣∣ s(z, ω)
s(z, ω) − x

∣∣∣∣
2

m(x)dx +
χ2

1 − p(z)

×
[
1 −

∫
[|s(z, ω)|2 − x]m(x)

|s(z, ω) − x|2 dx

]

×
{

1 −
∫ [

s2(z, ω) − x
]
m(x)

[s(z, ω)− x]2
dx

}
, (11)

where χ2 is the nonlinear susceptibility of the dielectric
particles.

In previous publications [6,23], by using the manipu-
lation of anisotropic microstructure, one can separate the

absorption peak from the nonlinearity enhancement peak
in a suspension of metal nanocrystals in a dielectric host.
In this paper, we have provided an alternative way, i.e.,
the use of compositional gradation, to achieve a large en-
hancement of third-order nonlinearity in a graded film. We
note that the compositionally graded film also possesses
an anisotropic optical nonlinear response, but we obtain a
larger enhancement of optical nonlinearity than in refer-
ences [6,23]. On the other hand, we would like to mention
reference [24], in which the Maxwell-Garnett approxima-
tion was used to calculate the equivalent effective linear
dielectric constant, and thus the calculation was restricted
to the volume fraction much less than unity. For present
study, we adopt effective medium approximation, which is
valid for all possible values of volume fractions of metal
particles. In this regard, the compositional gradation form
can be chosen easily. Another difference is that the equiv-
alent third-order nonlinear susceptibility in z-slice was as-
sumed to be the same as that of the metal component in
reference [24]. As the dielectric contrast ε1(z, ω)/ε2 is large
during calculations, such an assumption becomes rather
rough. The optimal treatment should be adopted to obtain
the equivalent (local) nonlinear susceptibility for z-slice,
as done in our present work.

The nonlinearity under the present consideration is cu-
bic. Consequently, the local fields inside the composite
system take on the same frequency as the applied field,
and harmonic generations are not included. However, for
quadratic nonlinearity, the explicit dependence of the local
dielectric response on the electric field vector will give rise
to harmonic local fields in composites. In this regard, Levy
et al. [25] have carried out the second and third harmonic
generations in some inhomogeneous media, e.g., parallel
slabs, dilute spherical inclusions, and so on. It would be
of great interest to investigate the harmonic generations
in compositionally graded composites.

Our theoretical investigations should be compared
with experimental reports. As a matter of fact, the opti-
cal nonlinearity enhancement of both the parallel and per-
pendicular polarizations are related to the nonlinear phase
shift, which can be measured by using Z-scan method [5].
Furthermore, the numerical simulations are now being car-
ried out to check our predictions.
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